Shortcuts

Source code for mmf.modules.losses

# Copyright (c) Facebook, Inc. and its affiliates.
"""
Losses module contains implementations for various losses used generally
in vision and language space. One can register custom losses to be detected by
MMF using the following example.

.. code::

   from mmf.common.registry import registry
   from torch import nn


   @registry.register_loss("custom")
   class CustomLoss(nn.Module):
       ...

Then in your model's config you can specify ``losses`` attribute to use this loss
in the following way:

.. code::

   model_config:
       some_model:
           losses:
               - type: custom
               - params: {}
"""
import collections
import warnings
from dataclasses import dataclass
from typing import Any, Dict, List, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmf.common.registry import registry
from mmf.utils.distributed import gather_tensor_along_batch_with_backward, get_rank
from mmf.utils.logger import log_class_usage
from omegaconf import MISSING
from packaging import version
from torch import Tensor
from torch.nn.utils.rnn import pack_padded_sequence


[docs]@dataclass class LossConfig: type: str = MISSING params: Dict[str, Any] = MISSING
[docs]class Losses(nn.Module): """``Losses`` acts as an abstraction for instantiating and calculating losses. ``BaseModel`` instantiates this class based on the `losses` attribute in the model's configuration `model_config`. ``loss_list`` needs to be a list for each separate loss containing `type` and `params` attributes. Args: loss_list (ListConfig): Description of parameter `loss_list`. Example:: # losses: # - type: logit_bce # Can also contain `params` to specify that particular loss's init params # - type: combined config = [{"type": "logit_bce"}, {"type": "combined"}] losses = Losses(config) .. note:: Since, ``Losses`` is instantiated in the ``BaseModel``, normal end user mostly doesn't need to use this class. Attributes: losses: List containing instantiations of each loss passed in config """ # TODO: Union types are not supported in OmegaConf. # Later investigate for a workaround.for def __init__(self, loss_list: List[Union[str, LossConfig]]): super().__init__() self.losses = nn.ModuleList() config = registry.get("config") self._evaluation_predict = False if config: self._evaluation_predict = config.get("evaluation", {}).get( "predict", False ) for loss in loss_list: self.losses.append(MMFLoss(loss))
[docs] def forward(self, sample_list: Dict[str, Tensor], model_output: Dict[str, Tensor]): """Takes in the original ``SampleList`` returned from DataLoader and `model_output` returned from the model and returned a Dict containing loss for each of the losses in `losses`. Args: sample_list (SampleList): SampleList given be the dataloader. model_output (Dict): Dict returned from model as output. Returns: Dict: Dictionary containing loss value for each of the loss. """ output = {} if "targets" not in sample_list: if not self._evaluation_predict: warnings.warn( "Sample list has not field 'targets', are you " "sure that your ImDB has labels? you may have " "wanted to run with evaluation.predict=true" ) return output for loss in self.losses: output.update(loss(sample_list, model_output)) if not torch.jit.is_scripting(): registry_loss_key = "{}.{}.{}".format( "losses", sample_list["dataset_name"], sample_list["dataset_type"] ) # Register the losses to registry registry.register(registry_loss_key, output) return output
[docs]class MMFLoss(nn.Module): """Internal MMF helper and wrapper class for all Loss classes. It makes sure that the value returned from a Loss class is a dict and contain proper dataset type in keys, so that it is easy to figure out which one is the val loss and which one is train loss. For example: it will return ``{"val/vqa2/logit_bce": 27.4}``, in case `logit_bce` is used and SampleList is from `val` set of dataset `vqa2`. Args: params (type): Description of parameter `params`. .. note:: Since, ``MMFLoss`` is used by the ``Losses`` class, end user doesn't need to worry about it. """ def __init__(self, params=None): super().__init__() if params is None: params = {} is_mapping = isinstance(params, collections.abc.MutableMapping) if is_mapping: if "type" not in params: raise ValueError( "Parameters to loss must have 'type' field to" "specify type of loss to instantiate" ) else: loss_name = params["type"] else: assert isinstance( params, str ), "loss must be a string or dictionary with 'type' key" loss_name = params self.name = loss_name loss_class = registry.get_loss_class(loss_name) log_class_usage("Loss", loss_class) if loss_class is None: raise ValueError(f"No loss named {loss_name} is registered to registry") # Special case of multi as it requires an array if loss_name.startswith("multi"): assert is_mapping self.loss_criterion = loss_class(params) else: if is_mapping: loss_params = params.get("params", {}) else: loss_params = {} self.loss_criterion = loss_class(**loss_params)
[docs] def forward(self, sample_list: Dict[str, Tensor], model_output: Dict[str, Tensor]): loss_dict = {} loss_result = self.loss_criterion(sample_list, model_output) if not isinstance(loss_result, collections.abc.Mapping): loss_result = {"": loss_result} for child_loss_name, child_loss_result in loss_result.items(): if not isinstance(child_loss_result, torch.Tensor): child_loss_result = torch.tensor(child_loss_result, dtype=torch.float) if child_loss_result.dim() == 0: child_loss_result = child_loss_result.view(1) if not torch.jit.is_scripting(): key = "{}/{}/{}".format( sample_list.dataset_type, sample_list.dataset_name, self.name ) else: key = f"{self.name}" key = f"{key}/{child_loss_name}" if child_loss_name else key loss_dict[key] = child_loss_result return loss_dict
[docs]@registry.register_loss("logit_bce") class LogitBinaryCrossEntropy(nn.Module): """Returns Binary Cross Entropy for logits. Attention: `Key`: logit_bce """ def __init__(self): super().__init__()
[docs] def forward(self, sample_list, model_output): """Calculates and returns the binary cross entropy for logits Args: sample_list (SampleList): SampleList containing `targets` attribute. model_output (Dict): Model output containing `scores` attribute. Returns: torch.FloatTensor: Float value for loss. """ scores = model_output["scores"] targets = sample_list["targets"] loss = F.binary_cross_entropy_with_logits(scores, targets, reduction="mean") return loss * targets.size(1)
[docs]@registry.register_loss("triple_logit_bce") class TripleLogitBinaryCrossEntropy(nn.Module): """ This is used for Three-branch fusion only. We predict scores and compute cross entropy loss for each of branches. """ def __init__(self): super().__init__()
[docs] def forward(self, sample_list, model_output): """Calculates and returns the binary cross entropy for logits Args: sample_list (SampleList): SampleList containing `targets` attribute. model_output (Dict): Model output containing `scores` attribute. Returns: torch.FloatTensor: Float value for loss. """ scores = model_output["scores"] targets = sample_list["targets"] if scores.dim() == 3: loss = ( F.binary_cross_entropy_with_logits( scores[:, 0], targets, reduction="mean" ) + F.binary_cross_entropy_with_logits( scores[:, 1], targets, reduction="mean" ) + F.binary_cross_entropy_with_logits( scores[:, 2], targets, reduction="mean" ) ) else: loss = F.binary_cross_entropy_with_logits(scores, targets, reduction="mean") return loss * targets.size(-1)
[docs]@registry.register_loss("bce") class BinaryCrossEntropyLoss(nn.Module): def __init__(self): super().__init__()
[docs] def forward(self, sample_list, model_output): """Calculates and returns the binary cross entropy. Args: sample_list (SampleList): SampleList containing `targets` attribute. model_output (Dict): Model output containing `scores` attribute. Returns: torch.FloatTensor: Float value for loss. """ scores = model_output["scores"] targets = sample_list["targets"] loss = F.binary_cross_entropy(scores, targets, reduction="mean") return loss * targets.size(1)
[docs]@registry.register_loss("caption_cross_entropy") class CaptionCrossEntropyLoss(nn.Module): def __init__(self): super().__init__()
[docs] def forward(self, sample_list, model_output): """Calculates and returns the cross entropy loss for captions. Args: sample_list (SampleList): SampleList containing `targets` attribute. model_output (Dict): Model output containing `scores` attribute. Returns: torch.FloatTensor: Float value for loss. """ scores = model_output["scores"] targets = sample_list["targets"] # If no captions(test dataset) then assume decode length to be uniform if hasattr(sample_list, "caption_len"): caption_lengths, _ = sample_list.caption_len.sort(dim=0, descending=True) decode_lengths = (caption_lengths - 1).tolist() else: decode_lengths = [targets.size(1)] * targets.size(0) if version.parse(torch.__version__) >= version.parse("1.1"): scores = pack_padded_sequence(scores, decode_lengths, batch_first=True).data targets = pack_padded_sequence( targets, decode_lengths, batch_first=True ).data else: scores, _ = pack_padded_sequence(scores, decode_lengths, batch_first=True) targets, _ = pack_padded_sequence(targets, decode_lengths, batch_first=True) loss = F.cross_entropy(scores, targets) return loss
[docs]@registry.register_loss("nll_loss") class NLLLoss(nn.Module): """Negative log likelikehood loss.""" def __init__(self): super().__init__()
[docs] def forward(self, sample_list, model_output): """Calculates and returns the negative log likelihood. Args: sample_list (SampleList): SampleList containing `targets` attribute. model_output (Dict): Model output containing `scores` attribute. Returns: torch.FloatTensor: Float value for loss. """ scores = model_output["scores"] targets = sample_list["targets"] _, idx = targets.max(dim=1) loss = F.nll_loss(scores, idx, reduction="mean") return loss * targets.size(1)
def kl_div(log_x, y): y_is_0 = torch.eq(y.data, 0) y.data.masked_fill_(y_is_0, 1) log_y = torch.log(y) y.data.masked_fill_(y_is_0, 0) res = y * (log_y - log_x) return torch.sum(res, dim=1, keepdim=True)
[docs]@registry.register_loss("multi") class MultiLoss(nn.Module): """A loss for combining multiple losses with weights. Args: params (List(Dict)): A list containing parameters for each different loss and their weights. Example:: # MultiLoss works with config like below where each loss's params and # weights are defined losses: - type: multi params: - type: logit_bce weight: 0.3 params: {} - type: attention_supervision weight: 0.7 params: {} """ def __init__(self, params): super().__init__() self.losses = [] self.losses_weights = [] self.loss_names = [] for loss_params in params["params"]: self.loss_names.append(loss_params["type"]) loss_fn = MMFLoss(loss_params) loss_weight = loss_params.get("weight", {}) self.losses.append(loss_fn) self.losses_weights.append(loss_weight)
[docs] def forward(self, sample_list, model_output, *args, **kwargs): """Calculates and returns the multi loss. Args: sample_list (SampleList): SampleList containing `attentions` attribute. model_output (Dict): Model output containing `attention_supervision` attribute. Returns: torch.FloatTensor: Float value for loss. """ loss = 0 for idx, loss_fn in enumerate(self.losses): value = loss_fn(sample_list, model_output, *args, **kwargs) loss += self.losses_weights[idx] * list(value.values())[0] return loss
[docs]@registry.register_loss("attention_supervision") class AttentionSupervisionLoss(nn.Module): """Loss for attention supervision. Used in case you want to make attentions similar to some particular values. """ def __init__(self): super().__init__() self.loss_fn = lambda *args, **kwargs: nn.functional.binary_cross_entropy( *args, **kwargs )
[docs] def forward(self, sample_list, model_output): """Calculates and returns the multi loss. Args: sample_list (SampleList): SampleList containing `targets` attribute. model_output (Dict): Model output containing `scores` attribute. Returns: torch.FloatTensor: Float value for loss. """ context_attentions = model_output["attentions"] attention_supervision = sample_list["info"]["attention_supervision"] loss = self.loss_fn( context_attentions[0], attention_supervision.float(), weight=attention_supervision.float(), ) # Multiply average loss back with target size to get actual loss return loss * attention_supervision.size(1)
[docs]@registry.register_loss("weighted_softmax") class WeightedSoftmaxLoss(nn.Module): def __init__(self): super().__init__()
[docs] def forward(self, sample_list, model_output): pred_score = model_output["scores"] target_score = sample_list["targets"] tar_sum = torch.sum(target_score, dim=1, keepdim=True) tar_sum_is_0 = torch.eq(tar_sum, 0) tar_sum.masked_fill_(tar_sum_is_0, 1.0e-06) tar = target_score / tar_sum res = F.log_softmax(pred_score, dim=1) loss = kl_div(res, tar) loss = loss * tar_sum loss = torch.sum(loss) / loss.size(0) return loss
[docs]@registry.register_loss("softmax_kldiv") class SoftmaxKlDivLoss(nn.Module): def __init__(self): super().__init__()
[docs] def forward(self, sample_list, model_output): pred_score = model_output["scores"] target_score = sample_list["targets"] tar_sum = torch.sum(target_score, dim=1, keepdim=True) tar_sum_is_0 = torch.eq(tar_sum, 0) tar_sum.masked_fill_(tar_sum_is_0, 1.0e-06) tar = target_score / tar_sum res = F.log_softmax(pred_score, dim=1) loss = kl_div(res, tar) loss = torch.sum(loss) / loss.size(0) return loss
[docs]@registry.register_loss("wrong") class WrongLoss(nn.Module): def __init__(self): super().__init__()
[docs] def forward(self, sample_list, model_output): pred_score = model_output["scores"] target_score = sample_list["targets"] tar_sum = torch.sum(target_score, dim=1, keepdim=True) tar_sum_is_0 = torch.eq(tar_sum, 0) tar_sum.masked_fill_(tar_sum_is_0, 1.0e-06) tar = target_score / tar_sum res = F.log_softmax(pred_score, dim=1) loss = F.kl_div(res, tar, reduction="mean") loss *= target_score.size(1) return loss
[docs]@registry.register_loss("bce_kl_combined") class CombinedLoss(nn.Module): def __init__(self, weight_softmax): super().__init__() self.weight_softmax = weight_softmax
[docs] def forward(self, sample_list, model_output): pred_score = model_output["scores"] target_score = sample_list["targets"] tar_sum = torch.sum(target_score, dim=1, keepdim=True) tar_sum_is_0 = torch.eq(tar_sum, 0) tar_sum.masked_fill_(tar_sum_is_0, 1.0e-06) tar = target_score / tar_sum res = F.log_softmax(pred_score, dim=1) loss1 = kl_div(res, tar) loss1 = torch.sum(loss1) / loss1.size(0) loss2 = F.binary_cross_entropy_with_logits( pred_score, target_score, reduction="mean" ) loss2 *= target_score.size(1) loss = self.weight_softmax * loss1 + loss2 return loss
[docs]@registry.register_loss("m4c_decoding_bce_with_mask") class M4CDecodingBCEWithMaskLoss(nn.Module): def __init__(self): super().__init__() self.one = torch.Tensor([1.0])
[docs] def forward(self, sample_list, model_output): scores = model_output["scores"] targets = sample_list["targets"] loss_mask = sample_list["train_loss_mask"] assert scores.dim() == 3 and loss_mask.dim() == 2 losses = F.binary_cross_entropy_with_logits(scores, targets, reduction="none") losses *= loss_mask.unsqueeze(-1) count = torch.max(torch.sum(loss_mask), self.one.to(losses.device)) loss = torch.sum(losses) / count return loss
[docs]@registry.register_loss("cross_entropy") class CrossEntropyLoss(nn.Module): def __init__(self, **params): super().__init__() self.loss_fn = nn.CrossEntropyLoss(**params)
[docs] def forward(self, sample_list, model_output): return self.loss_fn(model_output["scores"], sample_list["targets"])
[docs]@registry.register_loss("soft_label_cross_entropy") class SoftLabelCrossEntropyLoss(nn.Module): def __init__(self, ignore_index=-100, reduction="mean", normalize_targets=True): assert reduction in ( "mean", "sum", ), "Argument `reduction` only supports `mean` and `sum`" super().__init__() self.ignore_index = ignore_index self.reduction = reduction self.normalize_targets = normalize_targets self.eps = torch.finfo(torch.float32).eps @staticmethod def convert_to_one_hot(targets, n_classes): one_hot_targets = torch.zeros( (targets.size(0), n_classes), dtype=torch.long, device=targets.device ) one_hot_targets.scatter_(1, targets.long().view(-1, 1), 1) return one_hot_targets
[docs] def compute_loss(self, targets, scores): """for N examples and C classes - scores: N x C these are raw outputs (without softmax/sigmoid) - targets: N x C or N corresponding targets Target elements set to ignore_index contribute 0 loss. Samples where all entries are ignore_index do not contribute to the loss reduction. """ assert targets.size(0) == scores.size( 0 ), "`targets` and `scores` should have the same batch size" if targets.dim() == 1: targets = targets.unsqueeze(1) mask = targets.ne(self.ignore_index).float() # mask out `ignore_index` else: mask = targets.sum(-1, keepdim=True).ne(0).float() # mask out zero rows if targets.size(1) == 1: targets = self.convert_to_one_hot(targets, scores.size(1)) targets = targets.float() * mask if self.normalize_targets: targets /= self.eps + targets.sum(dim=1, keepdim=True) per_sample_per_target_loss = -targets * F.log_softmax(scores, dim=-1) per_sample_loss = torch.sum(per_sample_per_target_loss, -1) loss = per_sample_loss.sum() # perform reduction if self.reduction == "mean": # normalize based on the number of samples with > 0 non-ignored targets loss /= torch.sum(torch.sum(mask, -1) > 0).clamp(min=1) return loss
[docs] def forward(self, sample_list, model_output): return self.compute_loss(sample_list["targets"], model_output["scores"])
[docs]@registry.register_loss("label_smoothing_cross_entropy") class LabelSmoothingCrossEntropyLoss(SoftLabelCrossEntropyLoss): """Cross-entropy loss with label smoothing. If `label_smoothing` = 0, then it's canonical cross entropy. The smoothed one-hot encoding is 1 - label_smoothing for true label and label_smoothing / (num_classes - 1) for the rest. Reference: https://stackoverflow.com/questions/55681502/label-smoothing-in-pytorch """ def __init__(self, label_smoothing=0.1, reduction="mean", ignore_index=-100): assert ( 0 <= label_smoothing < 1 ), "value of argument `label_smoothing` must be in range [0, 1)." super().__init__(ignore_index, reduction, False) self.label_smoothing = label_smoothing def smooth_targets(self, targets, n_classes): if targets.dim() == 1: targets = targets.unsqueeze(1) mask = targets.ne(self.ignore_index) smoothing_value = self.label_smoothing / (n_classes - 1) one_hot = torch.full( (n_classes,), smoothing_value, device=targets.device ).repeat(targets.size(0), 1) # mask out target with `ignore_index` to avoid error `index out of bounds` one_hot.scatter_(1, targets * mask.long(), 1 - self.label_smoothing) return one_hot * mask.float()
[docs] def forward(self, sample_list, model_output): scores = model_output["scores"] one_hot = self.smooth_targets(sample_list["targets"], scores.size(1)) loss = self.compute_loss(one_hot, scores) return loss
[docs]@registry.register_loss("in_batch_hinge") class InBatchHinge(nn.Module): """ Based on the code from https://github.com/fartashf/vsepp/blob/master/model.py """ def __init__(self, margin: float = 0.0, hard: bool = False): super().__init__() self.margin = margin self.hard = hard def _compute_loss(self, correlations: Tensor): diagonal = correlations.diag()[:, None] d1 = diagonal.expand_as(correlations) d2 = diagonal.t().expand_as(correlations) # compare every diagonal score to scores in its column # caption retrieval cost_s = (self.margin + correlations - d1).clamp(min=0) # compare every diagonal score to scores in its row # image retrieval cost_im = (self.margin + correlations - d2).clamp(min=0) # clear diagonals mask = 1 - torch.eye(correlations.size(0), device=correlations.device) cost_s = cost_s * mask cost_im = cost_im * mask if self.hard: cost_s = cost_s.max(1)[0] cost_im = cost_im.max(0)[0] return cost_s.sum() + cost_im.sum()
[docs] def forward(self, sample_list: Dict[str, Tensor], model_output: Dict[str, Tensor]): image_embeddings = model_output["scores"] text_embeddings = model_output["targets"] if image_embeddings.shape[0] == text_embeddings.shape[0]: # Training/Single-GT loss correlations = image_embeddings @ text_embeddings.t() loss = self._compute_loss(correlations) else: # Evaluation/Multi-GT loss assert text_embeddings.shape[0] % image_embeddings.shape[0] == 0 batch_size, dim_size = image_embeddings.shape factor = text_embeddings.shape[0] // image_embeddings.shape[0] text_embeddings = text_embeddings.reshape(batch_size, factor, dim_size) correlations = image_embeddings @ text_embeddings.permute(1, 2, 0) # FxBxB loss = 0 for corr in correlations: loss += self._compute_loss(corr) return loss
[docs]@registry.register_loss("contrastive_loss") class ContrastiveLoss(nn.Module): """ This is a generic contrastive loss typically used for pretraining. No modality assumptions are made here. """ def __init__(self): super().__init__()
[docs] def forward(self, sample_list: Dict[str, Tensor], model_output: Dict[str, Tensor]): assert ( "embedding_1" in model_output and "embedding_2" in model_output ), "Embedding names must be available before loss calculation" embedding_1 = model_output["embedding_1"] embedding_2 = model_output["embedding_2"] assert embedding_1.size(0) == embedding_2.size(0), "batch size must match" per_gpu_batch_size = embedding_1.size(0) embedding_1_all_gpus = gather_tensor_along_batch_with_backward(embedding_1) embedding_2_all_gpus = gather_tensor_along_batch_with_backward(embedding_2) temperature = model_output["temperature"] logits_1 = ( torch.matmul(embedding_1, embedding_2_all_gpus.transpose(0, 1)) / temperature ) logits_2 = ( torch.matmul(embedding_2, embedding_1_all_gpus.transpose(0, 1)) / temperature ) labels = per_gpu_batch_size * get_rank() + torch.arange( per_gpu_batch_size, device=temperature.device ) loss_1 = F.cross_entropy(logits_1, labels) loss_2 = F.cross_entropy(logits_2, labels) return (loss_1 + loss_2) / 2
[docs]@registry.register_loss("mse") class MSELoss(nn.Module): """Mean Squared Error loss""" def __init__(self): super().__init__() self.loss_fn = nn.MSELoss()
[docs] def forward(self, sample_list, model_output): targets = sample_list["targets"] scores = model_output["scores"] loss = self.loss_fn(scores, targets) return loss
[docs]@registry.register_loss("cos_emb_loss") class CosineEmbeddingLoss(nn.Module): """Cosine embedding loss""" def __init__(self): super().__init__() self.loss_fn = nn.CosineEmbeddingLoss()
[docs] def forward(self, sample_list, model_output): targets = sample_list["targets"] scores = model_output["scores"] y = torch.ones(targets.size(0)).to(targets.device) loss = self.loss_fn(scores, targets, y) return loss
[docs]@registry.register_loss("bce_kl") class BCEAndKLLoss(nn.Module): """binary_cross_entropy_with_logits and kl divergence loss. Calculates both losses and returns a dict with string keys. Similar to bce_kl_combined, but returns both losses. """ def __init__(self, weight_softmax): super().__init__() self.weight_softmax = weight_softmax
[docs] def forward(self, sample_list, model_output): pred_score = model_output["scores"] target_score = sample_list["targets"] tar_sum = torch.sum(target_score, dim=1, keepdim=True) tar_sum_is_0 = torch.eq(tar_sum, 0) tar_sum.masked_fill_(tar_sum_is_0, 1.0e-06) tar = target_score / tar_sum res = F.log_softmax(pred_score, dim=1) loss1 = kl_div(res, tar) loss1 = torch.sum(loss1) / loss1.size(0) loss2 = F.binary_cross_entropy_with_logits( pred_score, target_score, reduction="mean" ) loss2 *= target_score.size(1) loss = {"kl": self.weight_softmax * loss1, "bce": loss2} return loss
def calc_ms_loss(pair, base, param, multiplier): return ( 1.0 / param * torch.log(1 + torch.sum(torch.exp(multiplier * param * (pair - base)))) )
[docs]@registry.register_loss("refiner_ms") class RefinerMSLoss(nn.Module): """ A Multi-Similarity loss between the decoder outputs of a given embedding size and its targets This loss pulls the decoded signal of a sample closer to its target, while simultaneously pushing it away from other targets References: 1) Wang et al., Multi-Similarity Loss With General Pair Weighting for Deep Metric Learning, CVPR 2019 2) Sankaran, S., Yang, D. and Lim, S.N., "Multimodal Fusion Refiner Networks" Parameters: same as ms_loss (see below) """ def __init__( self, alpha: float = 50, beta: float = 2, base: float = 0.5, margin: float = 0.1, epsilon: float = 1e-16, ): super().__init__() self.alpha = alpha self.beta = beta self.margin = margin self.base = base self.epsilon = epsilon
[docs] def forward(self, sample_list, model_output): targets = sample_list["targets"] inputs = model_output["scores"] n = inputs.size(0) sim_mat = torch.matmul(inputs, targets.t()) loss = [] for i in range(n): # pos pair is the similarity between the refiner output (input to forward) # and target (original encoding) pos_pair = sim_mat[i][i] # neg pair is all the remaining pairs neg_pairs_all = sim_mat[i] # remove the pos_par from neg_pairs neg_pairs_all = neg_pairs_all[abs(neg_pairs_all - pos_pair) > self.epsilon] # All pairs whose similarity is within a margin of the pos_pair similarity neg_pairs = neg_pairs_all[neg_pairs_all + self.margin > pos_pair] # nothing to do if there are no negative pairs from line 918 if len(neg_pairs) < 1: continue pos_loss = calc_ms_loss(pos_pair, self.base, self.beta, -1) neg_loss = calc_ms_loss(neg_pairs, self.base, self.alpha, 1) loss.append(pos_loss + neg_loss) loss = sum(loss) / n return loss
[docs]@registry.register_loss("ms_loss") class MSLoss(nn.Module): """ A Multi-Similarity loss between embeddings of similar and dissimilar labels is implemented here. Reference: "Multi-similarity loss with general pair weighting for deep metric learning" Args: alpha, beta, margin: parameters used in loss function calculation hard_mining: if true, select only the hardest examples (defined based on margin) is_multilabel: True if there are more than two labels, false otherwise """ def __init__( self, alpha=50, beta=2, margin=0.5, hard_mining=True, is_multilabel=False ): super().__init__() self.alpha = alpha self.beta = beta self.hard_mining = hard_mining self.margin = margin self.is_multilabel = is_multilabel def get_positive_and_negative_pairs(self, sim_vec, targets, curr_target): # given a sample with a similarity vec (embedding similarity to other samples) # return pairs of samples which share the same targets/labels (positive pairs) # and pairs of samples which have different labels (negative pairs) if self.is_multilabel: pos_pair_ = torch.masked_select( sim_vec, torch.matmul(targets, targets[0]) > 0 ) else: pos_pair_ = torch.masked_select(sim_vec, targets == curr_target) # remove itself pos_pair_ = torch.masked_select(pos_pair_, pos_pair_ < 1 - 1e-5) pos_pair_ = torch.sort(pos_pair_)[0] if self.is_multilabel: neg_pair_ = torch.masked_select( sim_vec, torch.matmul(targets, targets[0]) < 1e-5 ) else: neg_pair_ = torch.masked_select(sim_vec, targets != curr_target) neg_pair_ = torch.sort(neg_pair_)[0] if len(pos_pair_) == 0 or len(neg_pair_) == 0: return (pos_pair_, neg_pair_) if self.hard_mining is not None: neg_pair = torch.masked_select(neg_pair_, neg_pair_ + 0.1 > pos_pair_[0]) pos_pair = torch.masked_select(pos_pair_, pos_pair_ - 0.1 < neg_pair_[-1]) neg_pair_ = neg_pair pos_pair_ = pos_pair return (pos_pair_, neg_pair_)
[docs] def forward(self, sample_list, model_output): # get the fused features and normalize fusion_features = model_output["fused_embedding"] inputs = F.normalize(fusion_features) # get the targets targets = sample_list["targets"] batch_size = inputs.size(0) # sim_mat(i,j) contains the similarity between fused_embeddings of ith # and jth samples in a batch sim_mat = torch.matmul(inputs, inputs.t()) # this is the margin allowed for multi-similarity loss base = self.margin loss = [] for i in range(batch_size): (pos_pair_, neg_pair_) = self.get_positive_and_negative_pairs( sim_mat[i], targets, targets[i] ) # no compute needed when one of the pairs is not available if len(pos_pair_) == 0 or len(neg_pair_) == 0: continue pos_loss = calc_ms_loss(pos_pair_, base, self.beta, -1) neg_loss = calc_ms_loss(neg_pair_, base, self.alpha, 1) loss.append(pos_loss + neg_loss) if len(loss) == 0: loss = inputs.new_zeros(1, requires_grad=True) else: loss = sum(loss) / batch_size return loss
[docs]@registry.register_loss("refiner_contrastive_loss") class RefinerContrastiveLoss(nn.Module): """ A contrastive loss between the decoder outputs of a given embedding size and its targets This loss can be used in lieu of a reconstruction loss, wherein the goal is to get a decoded signal closer to its target than other targets. As long as the reconstructed signal of a given input is closer to its target than any other target, the loss will remain zero. Reference: Sankaran, S., Yang, D. and Lim, S.N., "Multimodal Fusion Refiner Networks" Parameters: sim_thresh: similarity threshold used to consider only samples beyond # this threshold """ def __init__(self, sim_thresh=0.1, epsilon=1e-16): super().__init__() self.similarity_threshold = sim_thresh self.epsilon = epsilon
[docs] def forward(self, sample_list, model_output): targets = sample_list["targets"] inputs = model_output["scores"] batch_size = inputs.size(0) # normalize inputs and targets inputs = F.normalize(inputs) targets = F.normalize(targets) # matrix containing the similarity between the inputs and targets # (i,j) contains similarity betweeh the i^th decoder and j^th target sim_mat = torch.matmul(inputs, targets.t()) loss = [] for i in range(batch_size): sim_ij = sim_mat[i] # pos_similarity contains the similarity between i^th decoder # and i^th target pos_similarity = sim_ij[i] # neg_pair_ contains all the batch samples whose similarity with i^th # decoder is better than a threshold corrected similarity between # i^th decoder and i^th target neg_pair_ = torch.masked_select( sim_ij, sim_ij > pos_similarity - self.similarity_threshold ) # remove the pos_pair from the neg_pair list neg_pair_ = torch.masked_select( neg_pair_, abs(neg_pair_ - pos_similarity) > self.epsilon ) # The loss is non-zero only when there exists at least one sample whose # target is closer to the decoded signal. if neg_pair_.shape[0] > 0: neg_loss = torch.mean( self.similarity_threshold + neg_pair_ - pos_similarity ) loss.append(neg_loss) if len(loss) == 0: loss = inputs.new_zeros(1, requires_grad=True) else: loss = sum(loss) / batch_size return loss