Pretrained Models
[Outdated] A new version of this will be uploaded soon
Performing inference using pretrained models in MMF is easy. Pickup a pretrained model from the table below and follow the steps to do inference or generate predictions for EvalAI evaluation. This section expects that you have already installed the required data as explained in quickstart.
Model | Model Key | Supported Datasets | Pretrained Models | Notes |
Pythia | pythia | vqa2, vizwiz, textvqa, visual_genome, | vqa2 train+val, vqa2 train only, vizwiz | VizWiz model has been pretrained on VQAv2 and transferred |
LoRRA | lorra | vqa2, vizwiz, textvqa | textvqa | |
CNNLSTM | cnn_lstm | clevr | Features are calculated on fly in this on | |
BAN | ban | vqa2, vizwiz, textvqa | Coming soon! | Support is preliminary and haven’t been tested throughly. |
BUTD | butd | coco | coco |
.. _vqa2 train+val: https://dl.fbaipublicfiles.com/pythia/pretrained_models/vqa2/pythia_train_val.pth .. _vqa2 train only: https://dl.fbaipublicfiles.com/pythia/pretrained_models/vqa2/pythia.pth .. _vizwiz: https://dl.fbaipublicfiles.com/pythia/pretrained_models/vizwiz/pythia_pretrained_vqa2.pth .. _textvqa: https://dl.fbaipublicfiles.com/pythia/pretrained_models/textvqa/lorra_best.pth .. _coco: https://dl.fbaipublicfiles.com/pythia/pretrained_models/coco_captions/butd.pth
Now, let's say your link to pretrained model model
is link
(select from table > right click > copy link address), the respective config should be at configs/[task]/[dataset]/[model].yaml
. For example, config file for vqa2 train_and_val
should be configs/vqa/vqa2/pythia_train_and_val.yaml
. Now to run inference for EvalAI, run the following command.
If you want to train or evaluate on val, change the run_type
to train
or val
accordingly. You can also use multiple run types, for e.g. to do training, inference on val as well as test you can set --run_type
to train+val+inference
.
if you remove --evalai_inference
argument, Pythia will perform inference and provide results directly on the dataset. Do note that this is not possible in case of test sets as we don't have answers/targets for them. So, this can be useful for performing inference on val set locally.
Table below shows evaluation metrics for various pretrained models:
Model | Dataset | Metric | Notes |
Pythia | vqa2 (train+val) | test-dev accuracy - 68.31% | Can be easily pushed to 69.2% |
Pythia | vqa2 (train) | test-dev accuracy - 66.7% | |
Pythia | vizwiz (train) | test-dev accuracy - 54.22% | Pretrained on VQA2 and transferred to VizWiz |
LoRRA | textvqa (train) | val accuracy - 27.4% | |
BUTD | coco(karpathy-train) | BLEU 1 - 76.02, BLEU 4- 35.42, METEOR- 27.39, ROUGE_L- 56.17, CIDEr - 112.03, SPICE - 20.33 | Beam Search(length 5), Karpathy test split |
Note for BUTD model : For training BUTD model use the config butd.yaml
. Training uses greedy decoding for validation. Currently we do not have support to train the model using beam search decoding validation. We will add that support soon. For inference only use butd_beam_search.yaml
config that supports beam search decoding.
Note that, for simplicity, our current released model does not incorporate extensive data augmentations (e.g. visual genome, visual dialogue) during training, which was used in our challenge winner entries for VQA and VizWiz 2018. As a result, there can be some performance gap to models reported and released previously. If you are looking for reproducing those results, please checkout the v0.1 release.